skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scheiderer, Claus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let $$K$$ be a real closed field with a nontrivial non-archimedean absolute value. We study a refined version of the tropicalization map, which we call real tropicalization map, that takes into account the signs on $$K$$. We study images of semialgebraic subsets of $K^n$ under this map from a general point of view. For a semialgebraic set $$S \subseteq K^n$$ we define a space $$S_r^{{\operatorname{an}}}$$ called the real analytification, which we show to be homeomorphic to the inverse limit of all real tropicalizations of $$S$$. We prove a real analogue of the tropical fundamental theorem and show that the tropicalization of any semialgebraic set is described by tropicalization of finitely many inequalities, which are valid on the semialgebraic set. We also study the topological properties of real analytification and tropicalization. If $$X$$ is an algebraic variety, we show that $$X_r^{{\operatorname{an}}}$$ can be canonically embedded into the real spectrum $$X_r$$ of $$X$$, and we study its relation with the Berkovich analytification of $$X$$. 
    more » « less